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Abstract. We have theoretically investigated chevron formation in smectic C materials and the trans-
formation of this chevron structure to a tilted layer structure as the cell is sheared. We find a series of
transition temperatures at which the behaviour of the cell critically changes. As the cell is cooled from the
smectic A phase past the first critical temperature there is a second order transition which forms two tilted
layer states with lower energy than the smectic A bookshelf structure. Although these low energy tilted
structures exist the bookshelf structure is the stable state for zero shear. However, upon further cooling this
bookshelf structure becomes unstable to the formation of a chevron state. Now when the cell is sheared the
chevron structure smoothly transforms into the tilted layer structure. As each further critical temperature
is passed an additional multiple chevron solution is formed which although a high energy, unstable state
may be observed transiently. For sufficiently low temperatures the transition from chevron to tilted layer
becomes first order. This first order transition occurs as the chevron interface merges with the surface
alignment region to form the tilted layer structure.

PACS. 61.30.Cz Theory and models of liquid crystal structure

1 Introduction

In recent years considerable effort has been devoted to
the understanding of smectic C (SC) and chiral smectic C
ferroelectric liquid crystals (S∗C or FLC). These materials
are of great commercial interest due to the considerable
potential for exploitation of ferroelectric liquid crystals in
display devices. Key to the development of such devices is
an understanding of the structures formed and the switch-
ing within surface stabilised homogeneously aligned cells.
One of the most important features found within these
cells is the chevron structure. This was first observed in
surface stabilised ferroelectric liquid crystal (SSFLC) cells
using X-ray diffraction in the S∗C phase [1,2], and later in
thicker cells [3], and finally in the smecticA (SA) phase [4].
The presence of two peaks in the diffraction pattern cor-
responded to equal and opposite layer tilts, ±δ, with a
sharp transition between them.

This chevron structure is believed to form due to the
mismatch between the prescribed SA layer thickness at
the cell surfaces and the layer thickness within the bulk of
the cell which is determined by the smectic cone angle θ.
This layer thickness matching condition can be satisfied
by tilting the layers away from the cell surface normal.
Recently Cagnon and Durand presented experimental ev-
idence which supported the notion that at the cell surfaces
the smectic layering is fixed in the smectic A state [5].

A number of theoretical models of the chevron struc-
ture have been developed in recent years [6–12]. The orig-
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inal model of Clark et al. [6] assumed that, at the chevron
interface, the smectic cone angle, θ, remained constant
whilst the layer tilt angle, δ, was discontinuous. Subse-
quent models, which insist that the layer structure remains
continuous throughout the cell, have allowed certain vari-
ables, such as the cone angle θ, the layer tilt angle δ and
the azimuthal angle φ to vary at the chevron interface.
In this paper we use a simple model, described below, of
the chevron structure which assumes that there is no ab-
solute layer compression and that the cell surfaces main-
tain smectic A ordering for all temperatures. In order to
simplify the calculations we assume that the azimuthal
angle is constant and that the director always lies in a
plane perpendicular to the cell surfaces (see Fig. 1). We
therefore restrict ourselves to considering planar chevrons,
previously discussed by Vaupotič et al. [12], in which, in
order to maintain a continuous layer tilt structure, the
liquid crystal must become smectic A at the chevron in-
terface. This simplified model is intended to show qual-
itatively the effect of shearing smectic chevrons. Clearly
the chevrons contained within ferroelectric display devices
are necessarily non-planar since the two possible chevron
interface configurations produce the essential bistability
of the device and whilst the regime of planar chevrons
is small their behaviour under shear may be indicative
of the behaviour of non-planar chevrons. It is also worth
noting that, although in this paper we will concentrate on
smectic C chevron behaviour due to their importance in
display technology, the assumption that the director re-
mains in the plane of the chevron implies that this model
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Fig. 1. The cell configuration (at zero shear) indicating the
director n which is contained within the xz-plane, the cone
angle θ, the layer tilt angle δ and the layer displacement, u.

Shear
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Fig. 2. The effects of temperature and shear. As the temper-
ature decreases the chevron structures forms. With an applied
shear this chevron structure transforms into a tilted layer.

will be particularly applicable to the formation of smectic
A chevrons.

This paper is a continuation of our previous work [13]
in which we considered the formation of the chevron struc-
ture as the material is cooled from the SA state to the SC
state. In [13] we have shown that although a tilted layer
structure may be energetically favourable in the smectic C
phase, the chevron structure is stabilized due to the pres-
ence of surface ordering. This ordering forces the liquid
crystal to be smectic A at the cell boundaries and thus
the layer thickness is equal to the smectic A layer thick-
ness which is assumed to be temperature independent. In
this paper we consider in detail the change in the chevron
structure as the cell is sheared. We find that the symmetric
chevron structure transforms into the lower energy tilted
chevron state through an asymmetric structure. For suf-
ficiently large cone angles the transition from chevron to
tilted layer is found to include a discontinuous jump from
asymmetric chevron to tilted layer as the chevron tip is
merged into the surface region (Fig. 2).

From this simple model we find a large number of
complex structures including multiple chevrons. Although
these high energy structures are unstable, they may be
seen transiently as the chevron structure is formed from
the smectic A bookshelf state.

2 Modelling

In our present model we assume that absolute layer com-
pression or dilation requires too much energy to be likely
to happen. Thus any change in layer thickness must be
accompanied by changes in the cone angle, θ. We will also
assume that the number of smectic layers within the cell
is strictly preserved. There is no reorganisation of layers
and no defects in the layering.

If we therefore start with a perfect bookshelf structure
in the smectic A phase, a change in the cone angle in the
bulk of the material will be accompanied by a tendency
for the layers to tilt in order to retain the layer packing
density wave. If the liquid crystal is strongly anchored
at the surfaces this leads to the formation of a chevron
consisting of regions of equal and opposite layer tilt. The
chevron interface, between these two regions of opposite
tilt, is assumed to be a localised bend of the layers as op-
posed to the discontinuous kink of the original model of
Clark et al. [6]. This assumption directly implies the con-
dition that the layer tilt, δ, is zero at the chevron interface.
In order to preserve the layer packing density wave this
also means that the liquid crystal will be in the smectic A
phase at the chevron interface.

The structure of the chevron will be governed by a bal-
ance of forces due to deviations of the cone angle from it’s
equilibrium bulk value and elastic forces due to distortions
of the director field. For small cone angles the energy (per
unit area) due to the former may be written in terms of a
Landau-de Gennes expansion in even powers of θ (due to
the symmetry, θ↔ −θ),

FLdeG =
∫ d

0

f0 +
a

2
θ2 +

b

4
θ4dz, (1)

where a = α(T − TAC) and TAC is the smectic A to C
transition temperature. In (1) f0 is the free energy in the
undistorted smecticA phase i.e. when θ = 0. Any constant
energy term such as f0 will not enter the minimization
of the free energy and will subsequently be disregarded.
This energy expression determines the bulk cone angle.
Minimization of (1) leads to the solutions θ = 0,±θe where

θe =

√
−a
b
· (2)

Thus in an undistorted sample of smectic material the
cone angle will be zero for temperatures above the transi-
tion temperature TAC (i.e. a > 0) and non-zero for tem-
peratures below TAC (i.e. a < 0).

The energy due to distortions of the director, n, can be
written as the Frank nematic energy of distortions within
a layer

Fnem =
∫ d

0

K

2

(
(∇.n)2 + (∇∧ n)2

)
dz, (3)

where the one constant approximation has been used. If
the director remains in the xz-plane the director n may
be written as (Fig. 1).

n = (cos(δ − θ), 0, sin(δ − θ)) . (4)
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In order to simplify the distortional energy we make cer-
tain key assumptions. We assume that the layer tilt angle,
δ, and the smectic cone angle, θ, are small and that there
is a direct relationship between them,

δ = νθ. (5)

This relationship may describe rod-shaped liquid crystal
molecules for which ν = 1 or, the more realistic, ellipse-
shaped liquid crystal molecules for which ν < 1.

These approximations reduce the free energy to,

Fnem =
∫ d

0

K

2
(1− ν)2

(
dθ
dz

)2

dz. (6)

The total free energy of the system is therefore

F =
∫ d

0

b

4
(
θ2 − θ2

e

)2
+
K ′

2

(
dθ
dz

)2

dz, (7)

where K ′ = K(1− ν)2.
In order to find the equilibrium configuration, the free

energy must be minimized subject to certain constraints
at the cell surfaces.

We wish to include a parameter which measures the
total amount of shear between the two surfaces. We as-
sume that the lower surface, z = 0, is fixed whereas the
upper surface, z = d, is sheared by an amount τ . If, as
in Figure 1, we define the layer displacement, u(z), as the
displacement away from the bookshelf geometry then the
amount of shear is τ = u(d)−u(0). Using the fact that the
layer tilt angle is given by tan δ = du/dz we may write,

u(d)− u(0) =
∫ d

0

du
dz

dz =
∫ d

0

tan δdz. (8)

The lower surface is fixed so u(0) = 0 and the layer tilt
angle is small and related to θ. Thus this expression be-
comes,

τ =
∫ d

0

νθdz. (9)

Hence the total shear is related to the chevron configura-
tion given by θ(z).

The other boundary conditions are related to the in-
duced ordering at the cell surfaces. We assume that the
liquid crystal is strongly anchored in the direction of the
layer normal at the cell surfaces. This implies that the cone
angle, θ, is equal to the layer tilt angle, δ, there. From (5),
assuming that ν 6= 1, this will only occur in the smectic
A phase i.e. when θ = 0. The boundary conditions are
therefore

θ = 0 on z = 0, d. (10)

We now have the full problem. We must determine the
chevron structure, θ(z), which minimizes the free en-
ergy (7) subject to the constraints (9) and (10).

By incorporating the constraint (9) into the energy
minimization with the use a Lagrange multiplier λ, this
problem is equivalent to minimizing the functional

F =
∫ d

0

b

4
(
θ2 − θ2

e

)2
+
K ′

2

(
dθ
dz

)2

+ λ
(
νθ − τ

d

)
dz,

(11)

with respect to θ and λ subject to the boundary condi-
tions (10).

Minimizing with respect to θ leads to the Euler-
Lagrange equation,

0 = K ′
d2θ

dz2
− bθ

(
θ2 − θ2

e

)
− νλ. (12)

It is this equation subject to the constraint (9) that we will
solve numerically. The system may be nondimensionalised
thus

d2θ

dZ2
−Bθ

(
θ2 − θ2

e

)
− Λ = 0, (13)∫ 1

0

θdZ = η, (14)

θ = 0 on Z = 0, 1. (15)

where B = bd2/K ′, Z = z/d and η = τ/(dν).
We therefore have three parameters, B, the ratio of

energy terms associated with changes in the cone angle
and distortions of the director, θe, the equilibrium bulk
cone angle and η, the normalised shear. If we assume the
material constant B is largely independent of temperature
then our two control parameters will be θe and η, changes
of which correspond to changes in temperature and shear
respectively.

As mentioned previously this model may also be
applied to smectic A chevron behaviour. If, in equa-
tions (13–15), we replace θ by the layer tilt δ then the
system can be used to model shearing of smectic A mate-
rials with temperature dependent layer thickness. In the
zero shear case this model of smectic A chevrons reduces
to the model of Limat and Prost [14].

In the next section we are able to investigate an-
alytically the stability of the bookshelf structure. Fur-
ther analytic progress is hindered by the complexity of
these nonlinear coupled integral and differential equa-
tions. We therefore use the numerical continuation pack-
age AUTO97 [15,16] to solve equation (13) subject to the
constraint (14) and the boundary conditions (15).

2.1 Stability of the bookshelf structure

In this section we will examine the stability of the book-
shelf structure as the temperature, or equivalently the
equilibrium cone angle, is varied. Introducing a general
perturbation of the bookshelf structure the system is sta-
ble or unstable if this perturbation respectively increases
or decreases the free energy. Since the free energy (7)
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Fig. 3. Numerical solutions at the SmA-SmC phase transition (θe = 0.0). (a) The free energy F , versus nondimensionalised
shear η. (b) The cone angle θ and (c) the nondimensionalised layer displacement U through the cell for shear values η =
0.0, 0.005, 0.01, 0.015, 0.02, 0.025. At the cell surfaces (Z = 0, 1) the cone angle fixed at zero so that the material is smectic A
whereas the interior of the cell is smectic C where the cone angle increases with shear.

does not contain information about the surface anchor-
ing we choose perturbations of the system which satisfy
the boundary conditions.

The smectic A bookshelf structure is described by
θ(z) = 0. It is a stationary point of the free energy (7)
for all values of θe and satisfies the shear constraint for
η = 0. As indicated above, stability of the bookshelf may
be investigated by considering individual modes of insta-
bility,

θ = ε sin (iπZ), (16)

where i = 1, 2 , 3 . . . This form of θ automatically satisfies
the boundary conditions (15) and for odd values of i the
total shear η is non-zero whilst for even i, η = 0. Therefore
if the bookshelf structure is unstable with respect to the
above perturbation (16) it is unstable to a tilted layer if i
is odd and a chevron structure if i is even.

Substituting (16) into the free energy (7) gives

F =
K ′

d

(
Bθ4

e

4
+
ε2

4
(
π2i2 −Bθ2

e

)
+O(ε4)

)
. (17)

If the coefficient of ε2 is positive the bookshelf structure
is stable to such a perturbation whilst if it is negative the
bookshelf is unstable. Hence for values of the equilibrium
cone angle θe less than or greater than the critical value

θ(i)
e =

iπ√
B
, (18)

the bookshelf structure is stable or unstable respectively,
to the ith mode. Using the typical parameter values [17],
K = 10−11 N, α = 1.7×102 Nm−2/K, b = 4.1×104 Nm−2,
ν = 0.85 and d = 10−6 m we obtain B = 1.822× 105 and
θ

(i)
e = 0.00736i rads (= 0.42169i o).

The first mode to become unstable is i = 1 at θ(1)
e =

0.00736 which is a tilted layer. Therefore for temperatures

above T (1) = TAC − 0.013 oC, shearing the cell induces a
stressed tilted layer structure and the free energy of the
system increases. Below T (1) the bookshelf structure is a
stressed state and shearing the cell will decrease the free
energy. The global minimum energy structure is then a
tilted layer with a specific value of the layer tilt, δ.

The next mode to become unstable is i = 2 at
θ

(2)
e = 0.01472 which is a chevron. Thus below T (2) =
TAC − 0.052 oC the stable zero shear state is now the
chevron structure. The bookshelf structure is an unsta-
ble, high energy state. Higher modes represent more com-
plex structures associated with multiple chevrons and
chevron/tilted layer combinations and may be seen in
more detail in the subsequent numerical solutions.

The above analysis is only valid close to the critical
values of θe. In order to investigate the layer configura-
tions at all temperatures we will now numerically solve
the governing equations.

2.2 Numerical solutions

Using the numerical continuation package AUTO97 we are
able to calculate solutions of equations (13–15) as certain
parameters are varied. Figures 3–8 show the numerical
results as the nondimensionalised shear, η, is varied for
various values of θe using the parameter value B = 1.822×
105 found in the previous section.

For each value of θe the free energy of the system, F ,
is plotted as η varies (e.g. Fig. 3a). At each value of θe
we have also plotted the cone angle θ(Z) and the nondi-
mensionalised layer displacement U(Z) = u(Z)/(dν) for
various values of η on the solution branch (e.g. Figs. 3b
and 3c). In these figures solid and dashed lines indicate
stable and unstable solutions respectively.

When θe = 0 (i.e. at the transition temperature
T = TAC) the bookshelf configuration is stable and is
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Fig. 4. Numerical solutions for θe = 0.01. (a) The free energy F , versus nondimensionalised shear η. (b) The cone angle θ and
(c) the nondimensionalised layer displacement U through the cell for shear values η = 0.0, 0.005, 0.01, 0.015, 0.02, 0.025. As in
Figure 3 the material is smectic A at the cell surfaces and smectic C in the interior.
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Fig. 5. Numerical solutions for θe = 0.02. (a) The free energy F , versus shear η. (b) The cone angle θ and (c) the layer
displacement U through the cell. For η = 0 the unstable bookshelf (dashed line) and stable chevron structures exist. As η
increases the chevron transforms to a tilted layer through an asymmetric chevron structure.

the minimum energy configuration with respect to changes
in the value of the shear η (Fig. 3a). If the cell is sheared
the free energy increases and the bookshelf continuously
transforms into a tilted layer (Fig. 3c). In order to pre-
serve the layer density wave the layer tilting is accompa-
nied by an increase in the value of the cone angle in the
cell (Fig. 3b). The smectic A ordering at the surface leads
to boundary layers at z = 0 and d where the layer tilt in-
duced by shear realigns to ensure that δ = 0 (and θ = 0)
at the surface. In this tilted layer situation it is only at
the surfaces that the material is smectic A whereas the
interior of the cell is smectic C.

As θe increases past the first critical value
θ

(1)
e = 0.00736 found in the previous section the

bookshelf structure is no longer the minimum energy

configuration for all shear values (Fig. 4a). There now
exist two symmetric states with non-zero values of η
which are the global energy minimizers corresponding
to tilted layers. It should be noted that for η = 0 the
bookshelf structure is the stable configuration. It is only
if the cell is sheared that it reaches its minimum energy
configuration. The θ(Z) and U(Z) plots (Figs. 4b and
4c) show that, as for θe < θ

(1)
e , the bookshelf structure

continuously transforms into a tilted layer structure as η
increases.

Figure 5 shows typical solutions for θ(2)
e < θe < θ

(3)
e

(0.01472 < θe < 0.02208). The bookshelf is now not sta-
ble. As θe increases past θ(2)

e a second solution branch
forms (at η = 0) with a lower energy than the bookshelf
branch. This is the (single) chevron solution branch. Thus
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Fig. 6. Numerical solutions for θe = 0.025. (a) The free energy F , versus shear η. (b) The cone angle θ and (c) the layer
displacement U through the cell. At zero shear (η = 0) there are now three solutions, the high energy, unstable bookshelf, the
intermediate energy, unstable double chevron characterised by two chevron interfaces within the cell (both dashed lines) and
the low energy, stable chevron.
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Fig. 7. Numerical solutions for θe = 0.035. (a) The free energy F , versus shear η. (b) The cone angle θ and (c) the layer
displacement U through the cell for η = 0 only. There now exists four zero shear solutions, the high energy, unstable bookshelf,
the intermediate energy, unstable double and triple chevron structures (dashed lines) and the low energy, stable chevron.

in Figure 5a the lower energy, stable branch at η = 0
corresponds to the chevron solution whilst the higher en-
ergy, unstable branch corresponds to the bookshelf solu-
tion. Figures 5b and 5c show the unstable bookshelf so-
lution (θ(Z) = 0, U(Z) = 0), the stable chevron solution
and how this chevron is continuously transformed to the
tilted layer as η is increased. We see that the chevron in-
terface, which lies in the centre of the cell when η = 0,
moves towards the upper cell surface forming an asym-
metric chevron as the cell is sheared and eventually com-
bines with the surface boundary layer forming the tilted
layer. The point where the bookshelf/tilted layer branch
meets the chevron branch is the point where the chevron
interface region meets the surface boundary layer region
(at approximately η = 0.0075 in Fig. 5a).

For θ(3)
e < θe < θ

(4)
e (0.02208 < θe < 0.02944) two

limit points form from the point η = 0 (Fig. 6a). Between
these limit points the solution is now a tilted layer/chevron
combined structure. The stable branch is essentially the
same chevron structure as for lower values of θe, and again
this structure continuously transforms into a tilted layer
as η increases. Figures 6b and 6c show the solutions for
η = 0 and the solutions along the stable branch. For zero
shear (η = 0) the solutions are now the high energy, unsta-
ble bookshelf structure, an intermediate energy, unstable
double chevron structure which contains two chevron in-
terfaces and the low energy, stable chevron structure.

As θe increases past θ(4)
e (Fig. 7) two bifurcation points

emerge from η = 0 between which there exists a new
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Fig. 8. Numerical solutions for θe = 0.075. (a) The free energy F , versus shear η near to the transition from single chevron to
tilted layer. (b) The cone angle θ and (c) the layer displacement U on the single chevron branch. (d) The cone angle θ and (d)
the layer displacement U on the tilted layer branch.

solution branch. The zero shear solutions are shown in
Figures 7b and 7c. The unstable bookshelf, double chevron
and the stable chevron are now joined by a triple chevron
which contains three chevron interfaces. The behaviour of
the stable branch is as for lower values of θe. The chevron
structure smoothly transforms to a tilted layer.

For larger values of θe the structure above the stable
chevron branch becomes increasingly more complicated as
the process described above repeats. At the odd critical
points θe = θ

(3)
e , θ

(5)
e . . . two limit points form at η = 0

whilst at the even critical points θe = θ
(4)
e , θ

(6)
e . . . two

bifurcation points form at η = 0 connected by a lower
energy branch on which the solution is a multiple chevron.
All of these solutions branches are unstable branches.

In all the above cases the transition from the stable sin-
gle chevron structure to the tilted layer has been contin-
uous as the shear, η, increases. However for large enough
values of θe we find that this is not the case. Figure 8a
shows, in detail, the region where the unstable branch
joins the stable branch for θe = 0.075. There now ex-
ist multiple solutions for a range of η values. The solu-

tions on the two stable branches are shown in Figures 8b–
8e. As the chevron interface meets the surface boundary
layer a first order transition occurs between an asymmetric
chevron and a tilted layer. Although the energy difference
between the two branches is never large in Figure 8a, for
lower temperatures (and therefore larger values of θe) the
energy difference increases. The relaxation process from
the high energy chevron branch to the low energy tilted
layer branch (or vice versa) may then be experimentally
observable.

3 Discussion

We have investigated chevron formation in smectic C ma-
terials as the temperature is decreased below the transi-
tion temperature TAC and the formation of a tilted layer
structure as the cell is sheared. We find that below a criti-
cal value of the bulk cone angle, θ(2)

e = 0.01472 (or equiva-
lently below the temperature T (2) = TAC − 0.052 oC), the
bookshelf structure is stable for zero shear. It is only for
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cone angles greater than θ
(2)
e that the chevron structure

forms. For larger values of θe whilst the chevron structure
is still the only stable solution for η = 0 there may be a
large array of unstable solutions, corresponding to multi-
ple chevrons, at higher energies. These solutions may be
important if the liquid crystal is quickly cooled from the
smectic A phase into the smectic C phase. Starting from
the unstable, bookshelf structure the system would trans-
form to the stable, single chevron structure. As we see
from Figure 7 this may involve moving through various in-
termediate, multiple chevron structures whilst maintain-
ing zero shear. In a dynamic model of the system these
intermediate structures may be seen transiently [18].

For non-zero shear a tilted layer structure is the
global energy minimizer for cone angles greater than
θ

(1)
e = 0.00736 (or temperatures lower than T (1) = TAC −

0.013 oC). The smectic liquid crystal then exerts a shear
force on the upper surface. If the upper surface was free
to move it would therefore move in order that tilted layers
were formed within the cell.

For sufficiently large cone angles this transition from
chevron to tilted layer goes through a first order tran-
sition. Assuming that the cell is sufficiently defect free,
the system will follow the higher energy, chevron branch
(Figs. 8b and 8c) as long as it exists and then relax to the
lower energy, tilted layer branch.

This surface shear force, exerted by the liquid crystal,
and the first order transition are expected to be appar-
ent if an equivalent experiment to that of Cagnon and
Durand [5] was carried out on smectic C materials.
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